Программирование на языке Пролог для искусственного интеллекта


         

Основные стратегии решения задач



ОСНОВНЫЕ СТРАТЕГИИ РЕШЕНИЯ ЗАДАЧ

В данной главе мы сосредоточим свое внимание на одной общей схеме для представления задач, называемой пространством состояний. Пространство состояний - это граф, вершины которого соответствуют ситуациям, встречающимся в задаче ("проблемные ситуации"), а решение задачи сводится к поиску пути в этом графе. Мы изучим на примерах, как формулируются задачи в терминах пространства состояний, а также обсудим общие методы решения задач, представленных в рамках этого формализма. Процесс решения задачи включает в себя поиск в графе, при этом, как правило, возникает проблема, как обрабатывать альтернативные пути поиска. В этой главе будут представлены две основные стратегии перебора альтернатив, а именно поиск в глубину и поиск в ширину.

double_line();

Литература



Литература

Поиск в глубину и поиск в ширину - базовые стратегии поиска, они описаны в любом учебнике по искусственному интеллекту, см., например, Nilsson (1971, 1980) или Winston (1984). Р. Ковальский в своей книге Kowalski (1980) показывает, как можно использовать аппарат математической логики для реализации этих принципов.

Kowalski R. (1980). Logic for Problem Solving. North-Holland.

Nilsson N. J. (1971). Problem Solving Methods in Artificial Intelligence. McGraw-Hill.

Nilsson N. J. (1980). Principles of Artificial Intelligence. Tioga; also Springer- Verlag, 1981.

Winston P. H. (1984). Artificial Intelligence (second edition). Addison-Wesley. [Имеется перевод первого издания: Уинстон П. Искусственный интеллект. - М.: Мир, 1980.]





Начинаясь в а, поиск вглубину заканчивается бесконечным циклом между d и h: a, b, d, h, d, h, d ... .



  Начинаясь в а, поиск вглубину заканчивается
бесконечным циклом между  d  и  h:   a, b, d, h, d, h, d ... .

Очевидное усовершенствование нашей программы поиска в глубину - добавление к ней механизма обнаружения циклов. Ни одну из вершин, уже содержащихся в пути, построенном из стартовой вершины в текущую вершину, не следует вторично рассматривать в качестве возможной альтернативы продолжения поиска. Это правило можно сформулировать в виде отношения

        вглубину( Путь, Верш, Решение)

Как видно из рис. 11.6, Верш - это состояние, из которого необходимо найти путь до цели; Путь - путь (список вершин) между стартовой вершиной и Верш; Решение - Путь, продолженный до целевой вершины.



Отношение paсширить( путь, дер, дер1, естьреш, решение):



  Отношение paсширить( Путь, Дер, Дер1, ЕстьРеш, Решение):


s -   стартовая вершина,  g -  целевая вершина. Решение - это Путь,
продолженный вплоть до  g.  Дер1 - результат расширения дерева
Дер на один уровень вниз.

получить поддерево Дер1 как результат расширения Дер на один уровень. Но в случае, когда в процессе расширения поддерева Дер встретится целевая вершина, процедура расширить должна сформировать соответствующий решающий путь.

Итак, процедура расширить будет порождать два типа результатов. На конкретный вид результата будет указывать значение переменной ЕстьРеш:

(1)        ЕстьРеш = да
            Решение = решающий путь, т. е. Путь, продолженный до целевой вершины.
            Дер1 = неконкретизировано.

Разумеется, такой тип результата получится только в том случае, когда Дер будет содержать целевую вершину. Добавим также, что эта целевая вершина обязана быть листом поддерева Дер.

(2)        ЕстьРеш = нет
            Дер1 = результат расширения поддерева Дер на один уровень вниз от своего "подножья". Дер1 не содержит ни одной "тупиковой" ветви из Дер, т. е. такой ветви, что она либо не может быть продолжена из-за отсутствия преемников, либо любое ее продолжение приводит к циклу.
            Решение = неконкретизировано.

Если в дереве Дер нет ни одной целевой вершины и, кроме того, оно не может быть расширено, то процедура расширить терпит неудачу.

Процедура верхнего уровня для поиска в ширину

        вширину( Дер, Решение)

отыскивает Решение либо среди множества кандидатов Дер, либо в его расширении. На рис. 11.3 показано, как выглядит программа целиком. В этой программе имеется вспомогательная процедура расширитьвсе. Она расширяет все деревья из некоторого списка, и затем, выбросив все "тупиковые" деревья", собирает все полученные расширенные деревья в один новый список. Используя механизм возвратов, она также порождает все решения, обнаруженные в деревьях из списка. Имеется одна дополнительная деталь: по крайней мере одно из деревьев должно "вырасти". Если это не так, то процедуре расширитьвсе не удается получить ни одного расширенного дерева - все деревья из списка оказываются "тупиковыми".

line();

%  ПОИСК В ШИРИНУ
%  Множество кандидатов представлено деревом

        решить( Старт, Решение) :-
                вширину( л( Старт), Решение).

        вширину( Дер, Решение) :-
                расширить( [ ], Дер, Дер1, ЕстьРеш, Решение),
                ( ЕстьРеш = да;
                ЕстьРеш = нет, вширину( Дер1, Решение) ).

        расширить( П, Л( В), _, да, [В | П] ) :-
                цель( В).

        расширить( П, Л( В), д( В, Пд), нет, _ ) :-
                bagof( л( B1),
                            ( после( В, B1), not принадлежит( В1, П)), Пд).

        расширить( П, д( В, Пд), д( В, Пд1), ЕстьРеш, Реш) :-
                расширитьвсе( [В | П], Пд, [ ], Пд1, ЕстьРеш, Реш).

        расширитьвсе( _, [ ], [Д | ДД], [Д | ДД], нет, _ ).
                                % По крайней мере одно дерево должно вырасти

        расширитьвсе( П, [Д | ДД], ДД1, Пд1, ЕстьРеш, Реш) :-
                расширить ( П, Д, Д1, ЕстьРеш1, Реш),
                ( ЕстьРеш 1= да, ЕстьРеш = да;
                    ЕстьРеш1 = нет,  !,
                    расширитьвсе( П, ДД, [Д1 | ДД1], Пд1, ЕстьРеш, Реш));
                расширитьвсе( П, ДД, ДД1, Пд1, ЕстьРеш, Реш ).

line();



Отношение вглубину( путь, в, решение).



  Отношение вглубину( Путь, В, Решение).

Для облегчения программирования вершины в списках, представляющих пути, будут расставляться в обратном порядке. Аргумент Путь нужен для того,

(1)        чтобы не рассматривать тех преемников вершины Верш, которые уже встречались раньше (обнаружение циклов);

(2)        чтобы облегчить построение решающего пути Решение. Соответствующая программа поиска в глубину показана на рис. 11.7.

line();

        решить( Верш, Решение) :-
                вглубину( [ ], Верш, Решение).

        вглубину( Путь, Верш, [Верш | Путь] ) :-
                цель( Верш).

        вглубину( Путь, Верш, Реш) :-
                после( Верш, Верш1),
                not принадлежит( Верш1, Путь),                                         % Цикл ?
                вглубину( [Верш | Путь], Верш1, Реш).

line();



Поиск в ширину



    Поиск в ширину

В противоположность поиску в глубину стратегия поиска в ширину предусматривает переход в первую очередь к вершинам, ближайший к стартовой вершине. В результате процесс поиска имеет тенденцию развиваться более в ширину, чем в глубину, что иллюстрирует рис. 11.9.

Поиск в ширину программируется не так легко, как поиск в глубину. Причина состоят в том, что



Предварительные понятия и примеры



    Предварительные понятия и примеры

Рассмотрим пример, представленный на рис. 11.1. Задача состоит в выработке плана переупорядочивания кубиков, поставленных друг на друга, как показано на рисунке. На каждом шагу разрешается переставлять только один кубик. Кубик можно взять только тогда, когда его верхняя поверхность свободна. Кубик можно поставить либо на стол, либо на другой кубик. Для того, чтобы построить требуемый план, мы должны отыскать последовательность ходов, реализующую заданную трансформацию.

Эту задачу можно представлять себе как задачу выбора среди множества возможных альтернатив. В исходной ситуации альтернатива всего одна: поставить кубик С на стол. После того как кубик С поставлен на стол, мы имеем три альтернативы: поставить А на стол или поставить А на С, или поставить С на А.



Пример простого пространства состояний: а - стартовая



  Пример простого пространства состояний:  а   -  стартовая


вершина,   f    и   j   -  целевые вершины. Порядок, в которой происходит
проход по вершинам пространства состояний при поиске в глубину:
а, b, d, h, e, i, j. Найдено решение [a, b, e, j]. После возврата
обнаружено другое решение: [а, с, f].

На Пролог это правило транслируется так:

        решить( В, [В] ) :-
                цель( В).

        решить( В, [В | Реш1] ) :-
                после( В, В1 ),
                решить( В1, Реш1).

Эта программа и есть реализация поиска в глубину. Мы говорим "в глубину", имея в виду тот порядок, в котором рассматриваются альтернативы в пространстве состояний. Всегда, когда алгоритму поиска в глубину надлежит выбрать из нескольких вершин ту, в которую следует перейти для продолжения поиска, он предпочитает самую "глубокую" из них. Самая глубокая вершина - это вершина, расположенная дальше других от стартовой вершины. На рис. 11.4 мы видим на примере, в каком порядке алгоритм проходит по вершинам. Этот порядок в точности соответствует результату трассировки процесса вычислений в пролог-системе при ответе на вопрос

        ?-  решить( а, Реш).

Поиск в глубину наиболее адекватен рекурсивному стилю программирования, принятому в Прологе. Причина этого состоит в том, что, обрабатывая цели, пролог-система сама просматривает альтернативы именно в глубину.

Поиск в глубину прост, его легко программировать и он в некоторых случаях хорошо работает. Программа для решения задачи о восьми ферзях (см. гл. 4) фактически была примером поиска в глубину. Для того, чтобы можно было применить к этой задаче описанную выше процедуру решить, необходимо сформулировать задачу в терминах пространства состояний. Это можно сделать так: вершины пространства состояний - позиции, в которых поставлено 0 или более ферзей на нескольких последовательно расположенных горизонтальных линиях доски; вершина-преемник данной вершины может быть получена из нее после того, как в соответствующей позиции на следующую горизонтальную линию доски будет поставлен еще один ферзь, причем таким образом, чтобы ни один из уже поставленных ферзей не оказался под боем; стартовая вершина - пустая доска (представляется пустым списком); целевая вершина - любая позиция с восемью ферзями (правило получения вершины-преемника гарантирует, что ферзи не бьют друг друга).

Позицию на доске будем представлять как список Y-координат поставленных ферзей. Получаем программу:

        после( Ферзи, [Ферзь | Ферзи] ) :-
                принадлежит( Ферзь, [1, 2, 3, 4, 5, 6, 7, 8] ),
                                % Поместить ферзя на любую вертикальную линию
                небьет( Ферзь, Ферзи).

        цель( [ _, _, _, _, _, _, _, _ ] )
                                % Позиция с восемью ферзями

Отношение небьет означает, что Ферзь не может поразить ни одного ферзя из списка Ферзи. Эту процедуру можно легко запрограммировать так же, как это сделано в гл. 4. Ответ на вопрос

        ?-  решить( [ ], Решение)

будет выглядеть как список позиций с постепенно увеличивающимся количеством поставленных ферзей. Список завершается "безопасной" конфигурацией из восьми ферзей. Механизм возвратов позволит получить и другие решения задачи.

Поиск в глубину часто работает хорошо, как в рассмотренном примере, однако наша простая процедура решить может попасть в затруднительное положение, причем многими способами. Случится ли это или нет - зависит от структуры пространства состояний. Для того, чтобы затруднить работу процедуры решить в примере рис. 11.4, достаточно внести в задачу совсем небольшое изменение: добавить дугу, ведущую из h  в  d,  чтобы получился цикл (рис. 11.5). В этом случае поиск будет выглядеть так: начиная с вершины  а,   спускаемся вплоть до  h,   придерживаясь самой левой ветви графа. На этот раз, в отличие от рис. 11.4, у вершины  h   будет преемник  d.  Поэтому произойдет не возврат из  h,  а переход к  d.  Затем мы найдем преемника вершины   d,  т.е. вершину  h,  и т.д., в результате программа зациклится между  h   и  d.



Программа поиска в глубину без зацикливания.



  Программа поиска в глубину без зацикливания.

Теперь наметим один вариант этой программы. Аргументы Путь и Верш процедуры вглубину можно объединить в один список [Верш | Путь]. Тогда, вместо вершины-кандидата Верш, претендующей на то, что она находится на пути, ведущем к цели, мы будем иметь путь-кандидат П = [Верш | Путь], который претендует на то, что его можно продолжить вплоть до целевой вершины. Программирование соответствующего предиката

        вглубину( П, Решение)

оставим читателю в качестве упражнения.

Наша процедура поиска в глубину, снабженная механизмом обнаружения циклов, будет успешно находить решающие пути в пространствах состояний, подобных показанному на рис. 11.5. Существуют, однако, такие пространства состоянии, в которых наша процедура не дойдет до цели. Дело в том, что многие пространства состояний бесконечны. В таком пространстве алгоритм поиска в глубину может "потерять" цель, двигаясь вдоль бесконечной ветви графа. Программа будет бесконечно долго обследовать эту бесконечную область пространства, так и не приблизившись к цели. Пространство состояний задачи о восьми ферзях, определенное так, как это сделано в настоящем разделе, на первый взгляд содержит ловушку именно такого рода. Но оказывается, что оно все-таки конечно, поскольку Y-координаты выбираются из ограниченного множества, и поэтому на доску можно поставить "безопасным образом" не более восьми ферзей.

line();

        вглубину2( Верш, [Верш], _ ) :-
                цель( Верш).

        вглубину2( Верш, [Верш | Реш], МаксГлуб) :-
                МаксГлуб > 0,
                после( Верш, Верш1),
                Maкс1 is МаксГлуб - 1,
                вглубину2( Верш1, Реш, Maкс1).

line();



Программа поиска в глубину с ограничением по глубине.



  Программа поиска в глубину с ограничением по глубине.

Для того, чтобы предотвратить бесцельное блуждание по бесконечным ветвям, мы можем добавить в базовую процедуру поиска в глубину еще одно усовершенствование, а именно, ввести ограничение на глубину поиска. Процедура поиска в глубину будет тогда иметь следующие аргументы:

        вглубину2( Верш, Решение, МаксГлуб)

Не разрешается вести поиск на глубине большей, чем МаксГлуб. Программная реализация этого ограничения сводится к уменьшению на единицу величины предела глубины при каждом рекурсивном обращений к вглубину2 и к проверке, что этот предел не стал отрицательным. В результате получаем программу, показанную на рис. 11.8.



Программа поиска в ширину более эффективная, чем



  Программа поиска в ширину более эффективная, чем

программа рис.11.10. Усовершенствование основано на разностном
представлении списка путей-кандидатов.

(1)        Начинаем с начального множества кандидатов:

                    [ [а] ]

(2)        Порождаем продолжения пути [а]:

                    [ [b, а], [с, а] ]

            (Обратите внимание, что пути записаны в обратном порядке.)

(3)        Удаляем первый путь из множества кандидатов и порождаем его продолжения:

                    [ [d, b, a], [e, b, а] ]

            Добавляем список продолжений в конец списка кандидатов:

                    [ [с, а], [d, b, a], [e, b, а] ]

(4)        Удаляем  [с, а],   а затем добавляем все его продолжения в конец множества кандидатов. Получаем:

                    [ [d, b, a], [e, b, а], [f, c, a], [g, c, a] ]

Далее, после того, как пути [d, b, a] и [e, b, а] будут продолжены, измененный список кандидатов примет вид

                    [[f, c, a], [g, c, a], [h, d, b, a], [i, e, b, a], [j, e, b, a]]

В этот момент обнаруживается путь [f, c, a], содержащий целевую вершину f. Этот путь выдается в качестве решения.

Программа, порождающая этот процесс, показана на рис. 11.10. В этой программе все продолжения пути на один шаг генерируются встроенной процедурой bagof. Кроме того, делается проверка, предотвращающая порождение циклических путей. Обратите внимание на то, что в случае, когда путь продолжить невозможно, и цель bagof терпит неудачу, обеспечивается альтернативный запуск процедуры вширину. Процедуры принадлежит и конк реализуют отношения принадлежности списку и конкатенации списков соответственно.

Недостатком этой программы является неэффективность операции конк. Положение можно исправить, применив разностное представление списков (см. гл. 8). Тогда множество путей-кандидатов будет представлено парой списков Пути и Z, записанной в виде

        Пути-Z

При введении этого представления в программу рис. 11.10 ее можно постепенно преобразовать в программу, показанную на рис. 11.11. Оставим это преобразование читателю в качестве упражнения.

  Древовидное представление множества кандидатов
2.  Древовидное представление множества кандидатов

Рассмотрим теперь еще одно изменение нашей программы поиска в ширину. До сих пор мы представляли множества путей-кандидатов как списки путей. Это расточительный способ, поскольку начальные участки путей являются общими для нескольких из них. Таким образом, эти общие части путей приходится хранить во многих экземплярах. Избежать избыточности помогло бы более компактное представление множества кандидатов. Таким более компактным представлением является дерево, в котором общие участки путей хранятся в его верхней части без дублирования. Будем использовать в программе следующее представление дерева. Имеется два случая:

Случай 1:        Дерево состоит только из одной вершины В; В этом случае оно имеет вид терма л( В); Функтор л указывает на то, что В - это лист дерева.

Случай 2:        Дерево состоит из корневой вершины В и множества поддеревьев Д1, Д2, ... . Такое дерево представляется термом

                    д( В, Пд)

        где Пд - список поддеревьев:

                    Пд = [ Д1, Д2, ...]

В качестве примера рассмотрим ситуацию, которая возникает после того, как порождены три уровня дерева рис. 11.9. Множество путей-кандидатов в случае спискового представления имеет вид:

        [ [d, b, a], [e, b, а], [f, c, a], [g, c, a] ]

В виде дерева это множество выглядит так:

        д( а, [д( b, [л( d), л( е)] ), д( с, [л( f), л( g)] )] )

На первый взгляд древовидное представление кажется еще более расточительным, чем списковое, однако это всего лишь поверхностное впечатление, связанное с компактностью прологовской нотации для списков.

В случае спискового представления множества кандидатов эффект распространения процесса в ширину достигался за счет перемещения продолженных путей в конец списка. В нашем случае мы уже не можем использовать этот прием, поэтому программа несколько усложняется. Ключевую роль в нашей программе будет играть отношение

        расширить( Путь, Дер, Дер1, ЕстьРеш, Решение)

На рис. 11.12 показано, как связаны между собой аргументы отношения расширить. При каждом обращении к расширить переменные Путь и Дер будут уже конкретизированы. Дер - поддерево всего дерева поиска, одновременно оно служит для представления множества путей-кандидатов внутри этого поддерева. Путь - это путь, ведущий из стартовой вершины в корень поддерева Дер. Самая общая идея алгоритма -



Простое пространство состояний: а - стартовая вершина,



Простое пространство состояний:  а  - стартовая вершина,


f  и  j  - целевые вершины. Применение стратегии поиска в ширину
дает следующий порядок прохода по вершинам: а, b, c, d, e, f. Более
короткое решение [a, c, f] найдено раньше, чем более длинное
[а, b, e, j]

нам приходится сохранять все множество альтернативных вершин-кандидатов, а не только одну вершину, как при поиске в глубину. Более того, если мы желаем получить при помощи процесса поиска решающий путь, то одного множества вершин недостаточно. Поэтому мы будем хранить не множество вершин-кандидатов, а множество путей-кандидатов. Таким образом, цель

        вширину( Пути, Решения)

истинна только тогда, когда существует путь из множества кандидатов Пути, который может быть продолжен вплоть до целевой вершины. Этот продолженный путь и есть Решение.

    Списковое представление множества кандидатов
1.    Списковое представление множества кандидатов

В нашей первой реализации этой идеи мы будем использовать следующее представление для множества

line();

        решить( Старт, Решение) :-
                вширину( [ [Старт] ], Решение).

        вширину( [ [Верш | Путь] | _ ], [Верш | Путь] ) :-
                цель( Верш).

        вширину( [ [В | Путь] | Пути], Решение ) :-
                bagof( [B1, В | Путь ],
                ( после( В, В1), not  принадлежит( В1, [В | Путь])),
                НовПути),
                        % НовПути - ациклические продолжения пути [В | Путь]
                конк( Пути, НовПути, Пути1),  !,
                вширину( Путь1, Решение);
                вширину( Пути, Решение).
                                % Случай, когда у В нет преемника

line();



Пространство состояний; а - стартовая вершина.



    (а)     Пространство состояний;  а -   стартовая вершина.


(b)     Дерево всех возможных ациклических путей, ведущих из  а,
порожденное программой поиска в ширину.

длин - самые короткие решения идут первыми. Это является важным обстоятельством, если нам необходима оптимальность (в отношении длины решения). Стратегия поиска в ширину гарантирует получение кратчайшего решения первым. Разумеется, это неверно для поиска в глубину.

Наши программы, однако, не учитывают стоимости, приписанные дугам в пространстве состояний. Если критерием оптимальности является минимум стоимости решающего пути (а не его длина), то в этом случае поиска в ширину недостаточно. Поиск с предпочтением из гл. 12 будет направлен на оптимизацию стоимости.

Еще одна типичная проблема, связанная с задачей поиска, - это проблема комбинаторной сложности. Для нетривиальных предметных областей число альтернатив столь велико, что проблема сложности часто принимает критический характер. Легко понять, почему это происходит: если каждая вершина имеет  b  преемников, то число путей длины  l,  ведущих из стартовой вершины, равно  bl  ( в предположении, что циклов нет). Таким образом, вместе с увеличением длин путей наблюдается экспоненциальный рост объема множества путей-кандидатов, что приводит к ситуации, называемой комбинаторным взрывом. Стратегии поиска в глубину и ширину недостаточно "умны" для борьбы с такой степенью комбинаторной сложности: отсутствие селективности приводит к тому, что все пути рассматриваются как одинаково перспективные.

По-видимому, более изощренные процедуры поиска должны использовать какую-либо информацию, отражающую специфику данной задачи, с тем чтобы на каждой стадии поиска принимать решения о наиболее перспективных путях поиска. В результате процесс будет продвигаться к целевой вершине, обходя бесполезные пути. Информация, относящаяся к конкретной решаемой задаче и используемая для управления поиском, называется эвристикой. Про алгоритмы, использующие эвристики, говорят, что они руководствуются эвристиками: они выполняют эвристический поиск. Один из таких методов изложен в следующей главе.



"игра в восемь" и ее представление в форме графа.



  "Игра в восемь" и ее представление в форме графа.

нять козу от волка и капусту от козы. С описанной парадигмой согласуются также многие задачи, имеющие практическое значение. Среди них - задача о коммивояжере, которая может служить моделью для многих практических оптимизационных задач. В задаче дается карта с n городами в указываются расстояния, которые надо преодолеть по дорогам при переезде из города в город. Необходимо найти маршрут, начинающийся в некотором городе, проходящий через все города и заканчивающиеся в том же городе. Ни один город, за исключением начального, не разрешается посещать дважды.

Давайте подытожим те понятия, которые мы ввели, рассматривая примеры. Пространство состояний некоторой задачи определяет "правила игры": вершины пространства состояния соответствуют ситуациям, а дуги - разрешенным ходам или действиям, или шагам решения задачи. Конкретная задача определяется пространством состояний стартовой вершиной целевым условием (т.е. условием, к достижению которого следует стремиться); "целевые вершины" - это вершины, удовлетворяющие этим условиям.

Каждому разрешенному ходу или действию можно приписать его стоимость. Например, в задаче манипуляции кубиками стоимости, приписанные тем или иным перемещениям кубиков, будут указывать иам на то, что некоторые кубики перемещать труднее, чем другие. В задаче о коммивояжере ходы соответствуют переездам из города в город. Ясно, что в данном случае стоимость хода - это расстояние между соответствующими городами.

В тех случаях, когда каждый ход имеет стоимость, мы заинтересованы в отыскании решения минимальной стоимости. Стоимость решения - это сумма стоимостей дуг, из которых состоит "решающий путь" - путь из стартовой вершины в целевую. Даже если стоимости не заданы, все равно может возникнуть оптимизационная задача: нас может интересовать кратчайшее решение.

Прежде тем будут рассмотрены некоторые программы, реализующие классический алгоритм поиска в пространстве состоянии, давайте сначала обсудим. как пространство состояний может быть представлено в прологовской программе.

Мы будем представлять пространство состояний при помощи отношения

        после( X, Y)

которое истинно тогда, когда в пространстве состояний существует разрешенный ход из вершины   Х  в вершину  Y.  Будем говорить, что   Y  - это преемник вершины  X.  Если с ходами связаны их стоимости, мы добавим третий аргумент, стоимость хода:

        после( X, Y, Ст)

Эти отношения можно задавать в программе явным образом при помощи набора соответствующих фактов. Однако такой принцип оказывается непрактичным и нереальным для тех типичных случаев, когда пространство состояний устроено достаточно сложно. Поэтому отношение следования после обычно определяется неявно, при помощи правил вычисления вершин-преемников некоторой заданной вершины. Другим вопросом, представляющим интерес с самой общей точки зрения, является вопрос о способе представления состояний, т.е. самих вершин. Это представление должно быть компактным, но в то же время оно должно обеспечивать эффективное выполнение необходимых операций, в частности операции вычисления вершин-преемников, а возможно и стоимостей соответствующих ходов.

Рассмотрим в качестве примера задачу манипулирования кубиками, проиллюстрированную на рис. 11.1. Мы будем рассматривать более общий случай, когда имеется произвольное число кубиков, из которых составлены столбики, - один или несколько. Число столбиков мы ограничим некоторым максимальным числом, чтобы задача была интереснее. Такое ограничение, кроме того, является вполне реальным, поскольку рабочее пространство, которым располагает робот, манипулирующий - кубиками, ограничено.

Проблемную ситуацию можно представить как список столбиков. Каждый столбик в свою очередь представляется списком кубиков, из которых он составлен. Кубики упорядочены в списке таким образом, что самый верхний кубик находится в голове списка. "Пустые" столбики изображаются как пустые списки. Таким образом, исходную ситуацию рис. 11.1 можно записать как терм

        [ [с, а, b], [ ], [ ] ]

Целевая ситуация - это любая конфигурация кубиков, содержащая, столбик, составленный из всех имеющихся кубиков в указанном порядке. Таких ситуаций три:

        [ [a, b, c], [ ], [ ] ]

        [ [ ], [а, b, с], [ ] ]

        [ [ ], [ ], [a, b, c] ]

Отношение следования можно запрограммировать, исходя из следующего правила: ситуация Сит2 есть преемник ситуации Сит1, если в Сит1 имеется два столбика Столб1 и Столб2, такие, что верхний кубик из Столб1 можно поставить сверху на Столб2 и получить тем самым Сит2. Поскольку все ситуации - это списки столбиков, правило транслируется на Пролог так:

        после( Столбы, [Столб1, [Верх1 | Столб2], Остальные]) :-
                                                % Переставить Верх1 на Столб2
                удалить( [Верх1 | Столб1], Столб1, Столб1),
                                                % Найти первый столбик
                удалить( Столб2, Столбы1, Остальные).
                                                % Найти второй столбик

        удалить( X, [X | L], L).

        удалить( X, [Y | L], [Y | L1] ) :-
                удалить( L, X, L1).

В нашем примере целевое условие имеет вид:

        цель( Ситуация) :-
                принадлежит [а,b,с], Ситуация)

Алгоритм поиска мы запрограммируем как отношение

        решить( Старт, Решение)

где Старт - стартовая вершина пространства состояний, а Решение - путь, ведущий из вершины Старт в любую целевую вершину. Для нашего конкретного примера обращение к пролог-системе имеет вид:

        ?-  решить( [ [с, а, b], [ ], [ ] ], Решение).

В результате успешного поиска переменная Решение конкретизируется и превращается в список конфигураций кубиков. Этот список представляет собой план преобразования исходного состояния в состояние, в котором все три кубика поставлены друг на друга в указанном порядке [а, b, с].



Реализации поиска в ширину.



  Реализации поиска в ширину.

путей-кандидатов. Само множество будет списком путей, а каждый путь - списком вершин, перечисленных в обратном порядке, т. е. головой списка будет самая последняя из порожденных вершин, а последним элементом списка будет стартовая вершина. Поиск начинается с одноэлементного множества кандидатов

        [ [СтартВерш] ]

Общие принципы поиска в ширину таковы:

Для того, чтобы выполнить поиск в ширину при заданном множестве путей-кандидатов, нужно: если голова первого пути - это целевая вершина, то взять этот путь в качестве решения, иначе удалить первый путь из множества кандидатов и породить множество всех возможных продолжений этого пути на один шаг; множество продолжений добавить в конец множества кандидатов, а затем выполнить поиск в ширину с полученным новым множеством.

В случае примера рис.11.9 этот процесс будет развиваться следующим образом:

line();

        решить( Старт, Решение) :-
                вширь( [ [Старт] | Z ]-Z, Решение).

        вширь( [ [Верш | Путь] | _ ]-_, [Верш | Путь] ) :-
                цель( Верш).

        вширь( [ [В | Путь] | Пути]-Z, Решение ) :-
                bagof( [B1, В | Путь ],
                            ( после( В, В1),
                               not принадлежит( В1, [В | Путь]) ),
                            Нов ),
                конк( Нов, ZZ, Z),  !,
                вширь( Пути-ZZ, Решение);
                Пути \== Z,            % Множество кандидатов не пусто
                вширь( Пути-Z, Решение).

line();



Реализация поиска в ширину с использованием



  Реализация поиска в ширину с использованием

древовидного представления множества путей-кандидатов.

Мы разработали эту более сложную реализацию поиска в ширину не только для того, чтобы получать программу более экономичную по сравнению с предыдущей версией, но также и потому, что такое решение задачи может послужить хорошим стартом для перехода к усложненным программам поиска, управляемым эвристиками, таким как программа поиска с предпочтением из гл. 12.



Пространство состояний есть формализм для



Резюме

Пространство состояний есть формализм для представления задач. Пространство состояний - это направленный граф, вершины которого соответствуют проблемным ситуациям, а дуги - возможным ходам. Конкретная задача определяется стартовой вершиной и целевым условием. Решению задачи соответствует путь в графе. Таким образом, решение задачи сводится к поиску пути в графе. Оптимизационные задачи моделируются приписыванием каждой дуге пространства состояний некоторой стоимости. Имеются две основных стратегии поиска в пространстве состояний - поиск в глубину и поиск в ширину. Поиск в глубину программируется наиболее легко, однако подвержен зацикливаниям. Существуют два простых метода предотвращения зацикливания: ограничить глубину поиска и не допускать дублирования вершин. Реализация поиска в ширину более сложна, поскольку требуется сохранять множество кандидатов. Это множество может быть с легкостью представлено списком списков, но более экономное представление - в виде дерева. Поиск в ширину всегда первым обнаруживает самое короткое решение, что не верно в отношении стратегии поиска в глубину. В случае обширных пространств состояний существует опасность комбинаторного взрыва. Обе стратегии плохо приспособлены для борьбы с этой трудностью. В таких случаях необходимо руководствоваться эвристиками. В этой главе были введены следующие понятия:

пространство состояний
        стартовая вершина, целевое условие,
        решающий путь
        стратегия поиска
        поиск в глубину, поиск в ширину
        эвристический поиск.

Стратегия поиска в глубину



    Стратегия поиска в глубину

Существует много различных подходов к проблеме поиска решающего пути для задач, сформулированных в терминах пространства состояний. Основные две стратегии поиска - это поиск в глубину и поиск в ширину. В настоящем разделе мы реализуем первую из них.

Мы начнем разработку алгоритма и его вариантов со следующей простой идеи:

line();

Для того, чтобы найти решающий путь Реш из заданной вершины В в некоторую целевую вершину, необходимо: если В - это целевая вершина, то положить Реш = [В], или если для исходной вершины В существует вершина-преемник В1, такая, что можно провести путь Реш1 из В1 в целевую вершину, то положить Реш = [В | Peш1]. line();



как продолжение пути ПутьКандидат. Оба



Упражнения

    Напишите процедуру поиска в глубину (с обнаружением циклов)
        вглубину1( ПутьКандидат, Решение)
отыскивающую решающий путь Решение как продолжение пути ПутьКандидат. Оба пути представляйте списками вершин, расположенных в обратном порядке так, что целевая вершина окажется в голове списка Решение.
Посмотреть ответ
    Напишите процедуру поиска в глубину, сочетающую в себе обнаружение циклов с ограничением глубины, используя рис. 11.7 и 11.8.
    Проведите эксперимент по применению программы поиска в глубину к задаче планирования в "мире кубиков" (рис. 11.1).
    Напишите процедуру
        отобр( Ситуация)
для отображения состояния задачи "перестановки кубиков". Пусть Ситуация - это список столбиков, а столбик, в свою очередь, - список кубиков. Цель
        отобр( [ [a], [e, d], [с, b] ] )
должна отпечатать соответствующую ситуацию, например так:
                е         с
      a        d         b
      ================

используя разностное представление для списка



Упражнения

    Перепишите программу поиска в ширину рис. 11.10, используя разностное представление для списка путей-кандидатов и покажите, что в результате получится программа, приведенная на рис. 11.11. Зачем в программу рис. 11.11 включена цель
        Пути \== Z
Проверьте, что случится при поиске в пространстве состояний рис. 11.9, если эту цель опустить. Различие в выполнении программы, возникнет только при попытке найти новые решения в ситуации, когда не осталось больше ни одного решения.
    Как программы настоящего раздела можно использовать для поиска, начинающегося от стартового множества вершин, вместо одной стартовой вершины?
Посмотреть ответ
    Как программы этой главы можно использовать для поиска в обратном направлении, т.е. от целевой вершины к стартовой вершине (или к одной из стартовых вершин, если их несколько). Указание: переопределите отношение после. В каких ситуациях обратный поиск будет иметь преимущества перед прямым поиском?
    Иногда выгодно сделать поиск двунаправленным, т. е. продвигаться одновременно с двух сторон от стартовой и целевой вершин. Поиск заканчивается, когда оба пути "встречаются". Определите пространство поиска (отношение после) и целевое отношение для заданного графа таким образом, чтобы наши процедуры поиска в действительности выполняли двунаправленный поиск.
    Проведите эксперименты с различными методами поиска применительно к задаче планирования в "мире кубиков".


Задача перестановки кубиков.



  Задача перестановки кубиков.

Ясно, что альтернативу "поставить С на стол" не имело смысла рассматривать всерьез, так как этот ход никак не влияет на ситуацию.

Как показывает рассмотренный пример, с задачами такого рода связано два типа понятий:

(1)        Проблемные ситуации.
(2)        Разрешенные ходы или действия, преобразующие одни проблемные ситуации в другие.

Проблемные ситуации вместе с возможными ходами образуют направленный граф, называемый пространством состояний. Пространство состояний для только что рассмотренного примера дано на рис. 11.2. Вершины графа соответствуют проблемным ситуациям, дуги - разрешенным переходам из одних состояний в другие. Задача отыскания плана решения задачи эквивалентна задаче построения пути между заданной начальной ситуацией ("стартовой" вершиной) и некоторой указанной заранее конечной ситуацией, называемой также целевой вершиной.

На рис. 11.3 показан еще один пример задачи: головоломка "игра в восемь" в ее представление в виде задачи поиска пути. В головоломке используется восемь перемещаемых фишек, пронумерованных цифрами от 1 до 8. Фишки располагаются в девяти ячейках, образующих матрицу 3 на 3. Одна из ячеек



Замечания относительно поиска в графах, оптимальности к сложности



    Замечания относительно поиска в графах, оптимальности к сложности

Сейчас уместно сделать ряд замечаний относительно программ поиска, разработанных к настоящему моменту: во-первых, о поиске в графах, во-вторых, об оптимальности полученных решений и, в-третьих, о сложности поиска.

Приведенные примеры могли создать ложное впечатление, что наши программы поиска в ширину способны работать только в пространствах состояний, являющихся деревьями, а не графами общего вида. На самом деле, тот факт, что в одной из версий множество путей-кандидатов представлялось деревом, совсем не означает, что и само пространство состояний должно было быть деревом. Когда поиск проводится в графе, граф фактически разворачивается в дерево, причем некоторые пути, возможно, дублируются в разных частях этого дерева (см. рис. 11.14).

Наши программы поиска в ширину порождают решающие пути один за другим в порядке увеличения их